Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Vaccines (Basel) ; 11(1)2022 Dec 21.
Article in English | MEDLINE | ID: covidwho-2234907

ABSTRACT

We aimed to investigate vaccine effectiveness against progression to severe COVID-19 (acute respiratory distress syndrome (ARDS), intensive care unit (ICU) admission and/or death) and in-hospital death in a cohort of hospitalized COVID-19 patients. Mixed effects logistic regression analyses were performed to estimate the association between receiving a primary COVID-19 vaccination schedule and severe outcomes after adjusting for patient, hospital, and vaccination characteristics. Additionally, the effects of the vaccine brands including mRNA vaccines mRNA-1273 and BNT162b2, and adenovirus-vector vaccines ChAdOx1 (AZ) and Ad26.COV2.S (J&J) were compared to each other. This retrospective, multicenter cohort study included 2493 COVID-19 patients hospitalized across 73 acute care hospitals in Belgium during the time period 15 August 2021-14 November 2021 when the Delta variant (B1.617.2) was predominant. Hospitalized COVID-19 patients that received a primary vaccination schedule had lower odds of progressing to severe disease (OR (95% CI); 0.48 (0.38; 0.60)) and in-hospital death (OR (95% CI); 0.49 (0.36; 0.65)) than unvaccinated patients. Among the vaccinated patients older than 75 years, mRNA vaccines and AZ seemed to confer similar protection, while one dose of J&J showed lower protection in this age category. In conclusion, a primary vaccination schedule protects against worsening of COVID-19 to severe outcomes among hospitalized patients.

2.
Vaccines (Basel) ; 11(2)2023 Feb 07.
Article in English | MEDLINE | ID: covidwho-2233260

ABSTRACT

We investigated effectiveness of (1) mRNA booster vaccination versus primary vaccination only and (2) heterologous (viral vector-mRNA) versus homologous (mRNA-mRNA) prime-boost vaccination against severe outcomes of BA.1, BA.2, BA.4 or BA.5 Omicron infection (confirmed by whole genome sequencing) among hospitalized COVID-19 patients using observational data from national COVID-19 registries. In addition, it was investigated whether the difference between the heterologous and homologous prime-boost vaccination was homogenous across Omicron sub-lineages. Regression standardization (parametric g-formula) was used to estimate counterfactual risks for severe COVID-19 (combination of severity indicators), intensive care unit (ICU) admission, and in-hospital mortality under exposure to different vaccination schedules. The estimated risk for severe COVID-19 and in-hospital mortality was significantly lower with an mRNA booster vaccination as compared to only a primary vaccination schedule (RR = 0.59 [0.33; 0.85] and RR = 0.47 [0.15; 0.79], respectively). No significance difference was observed in the estimated risk for severe COVID-19, ICU admission and in-hospital mortality with a heterologous compared to a homologous prime-boost vaccination schedule, and this difference was not significantly modified by the Omicron sub-lineage. Our results support evidence that mRNA booster vaccination reduced the risk of severe COVID-19 disease during the Omicron-predominant period.

3.
BMC Infect Dis ; 22(1): 839, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2119352

ABSTRACT

BACKGROUND: Differences in the genetic material of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may result in altered virulence characteristics. Assessing the disease severity caused by newly emerging variants is essential to estimate their impact on public health. However, causally inferring the intrinsic severity of infection with variants using observational data is a challenging process on which guidance is still limited. We describe potential limitations and biases that researchers are confronted with and evaluate different methodological approaches to study the severity of infection with SARS-CoV-2 variants. METHODS: We reviewed the literature to identify limitations and potential biases in methods used to study the severity of infection with a particular variant. The impact of different methodological choices is illustrated by using real-world data of Belgian hospitalized COVID-19 patients. RESULTS: We observed different ways of defining coronavirus disease 2019 (COVID-19) disease severity (e.g., admission to the hospital or intensive care unit versus the occurrence of severe complications or death) and exposure to a variant (e.g., linkage of the sequencing or genotyping result with the patient data through a unique identifier versus categorization of patients based on time periods). Different potential selection biases (e.g., overcontrol bias, endogenous selection bias, sample truncation bias) and factors fluctuating over time (e.g., medical expertise and therapeutic strategies, vaccination coverage and natural immunity, pressure on the healthcare system, affected population groups) according to the successive waves of COVID-19, dominated by different variants, were identified. Using data of Belgian hospitalized COVID-19 patients, we were able to document (i) the robustness of the analyses when using different variant exposure ascertainment methods, (ii) indications of the presence of selection bias and (iii) how important confounding variables are fluctuating over time. CONCLUSIONS: When estimating the unbiased marginal effect of SARS-CoV-2 variants on the severity of infection, different strategies can be used and different assumptions can be made, potentially leading to different conclusions. We propose four best practices to identify and reduce potential bias introduced by the study design, the data analysis approach, and the features of the underlying surveillance strategies and data infrastructure.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Belgium/epidemiology , Intensive Care Units
4.
Viruses ; 14(6)2022 06 14.
Article in English | MEDLINE | ID: covidwho-1911633

ABSTRACT

This retrospective multi-center matched cohort study assessed the risk for severe COVID-19 (combination of severity indicators), intensive care unit (ICU) admission, and in-hospital mortality in hospitalized patients when infected with the Omicron variant compared to when infected with the Delta variant. The study is based on a causal framework using individually-linked data from national COVID-19 registries. The study population consisted of 954 COVID-19 patients (of which, 445 were infected with Omicron) above 18 years old admitted to a Belgian hospital during the autumn and winter season 2021-2022, and with available viral genomic data. Patients were matched based on the hospital, whereas other possible confounders (demographics, comorbidities, vaccination status, socio-economic status, and ICU occupancy) were adjusted for by using a multivariable logistic regression analysis. The estimated standardized risk for severe COVID-19 and ICU admission in hospitalized patients was significantly lower (RR = 0.63; 95% CI (0.30; 0.97) and RR = 0.56; 95% CI (0.14; 0.99), respectively) when infected with the Omicron variant, whereas in-hospital mortality was not significantly different according to the SARS-CoV-2 variant (RR = 0.78, 95% CI (0.28-1.29)). This study demonstrates the added value of integrated genomic and clinical surveillance to recognize the multifactorial nature of COVID-19 pathogenesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Belgium/epidemiology , COVID-19/epidemiology , Cohort Studies , Humans , Retrospective Studies , SARS-CoV-2/genetics , Seasons
5.
PLoS One ; 17(6): e0269138, 2022.
Article in English | MEDLINE | ID: covidwho-1879315

ABSTRACT

INTRODUCTION: The pathogenesis of COVID-19 depends on the interplay between host characteristics, viral characteristics and contextual factors. Here, we compare COVID-19 disease severity between hospitalized patients in Belgium infected with the SARS-CoV-2 variant B.1.1.7 and those infected with previously circulating strains. METHODS: The study is conducted within a causal framework to study the severity of SARS-CoV-2 variants by merging surveillance registries in Belgium. Infection with SARS-CoV-2 B.1.1.7 ('exposed') was compared to infection with previously circulating strains ('unexposed') in terms of the manifestation of severe COVID-19, intensive care unit (ICU) admission, or in-hospital mortality. The exposed and unexposed group were matched based on the hospital and the mean ICU occupancy rate during the patient's hospital stay. Other variables identified as confounders in a Directed Acyclic Graph (DAG) were adjusted for using regression analysis. Sensitivity analyses were performed to assess the influence of selection bias, vaccination rollout, and unmeasured confounding. RESULTS: We observed no difference between the exposed and unexposed group in severe COVID-19 disease or in-hospital mortality (RR = 1.15, 95% CI [0.93-1.38] and RR = 0.92, 95% CI [0.62-1.23], respectively). The estimated standardized risk to be admitted in ICU was significantly higher (RR = 1.36, 95% CI [1.03-1.68]) when infected with the B.1.1.7 variant. An age-stratified analysis showed that among the younger age group (≤65 years), the SARS-CoV-2 variant B.1.1.7 was significantly associated with both severe COVID-19 progression and ICU admission. CONCLUSION: This matched observational cohort study did not find an overall increased risk of severe COVID-19 or death associated with B.1.1.7 infection among patients already hospitalized. There was a significant increased risk to be transferred to ICU when infected with the B.1.1.7 variant, especially among the younger age group. However, potential selection biases advocate for more systematic sequencing of samples from hospitalized COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Belgium/epidemiology , COVID-19/epidemiology , Hospitalization , Humans
6.
BMC Genomics ; 22(1): 912, 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1577274

ABSTRACT

BACKGROUND: The severity of influenza disease can range from mild symptoms to severe respiratory failure and can partly be explained by host genetic factors that predisposes the host to severe influenza. Here, we aimed to summarize the current state of evidence that host genetic variants play a role in the susceptibility to severe influenza infection by conducting a systematic review and performing a meta-analysis for all markers with at least three or more data entries. RESULTS: A total of 34 primary human genetic association studies were identified that investigated a total of 20 different genes. The only significant pooled ORs were retrieved for the rs12252 polymorphism: an overall OR of 1.52 (95% CI [1.06-2.17]) for the rs12252-C allele compared to the rs12252-T allele. A stratified analysis by ethnicity revealed opposite effects in different populations. CONCLUSION: With exception for the rs12252 polymorphism, we could not identify specific genetic polymorphisms to be associated with severe influenza infection in a pooled meta-analysis. This advocates for the use of large, hypothesis-free, genome-wide association studies that account for the polygenic nature and the interactions with other host, pathogen and environmental factors.


Subject(s)
Influenza, Human , Genome-Wide Association Study , Humans , Influenza, Human/genetics
7.
Euro Surveill ; 26(48)2021 12.
Article in English | MEDLINE | ID: covidwho-1613502

ABSTRACT

BackgroundCOVID-19-related mortality in Belgium has drawn attention for two reasons: its high level, and a good completeness in reporting of deaths. An ad hoc surveillance was established to register COVID-19 death numbers in hospitals, long-term care facilities (LTCF) and the community. Belgium adopted broad inclusion criteria for the COVID-19 death notifications, also including possible cases, resulting in a robust correlation between COVID-19 and all-cause mortality.AimTo document and assess the COVID-19 mortality surveillance in Belgium.MethodsWe described the content and data flows of the registration and we assessed the situation as of 21 June 2020, 103 days after the first death attributable to COVID-19 in Belgium. We calculated the participation rate, the notification delay, the percentage of error detected, and the results of additional investigations.ResultsThe participation rate was 100% for hospitals and 83% for nursing homes. Of all deaths, 85% were recorded within 2 calendar days: 11% within the same day, 41% after 1 day and 33% after 2 days, with a quicker notification in hospitals than in LTCF. Corrections of detected errors reduced the death toll by 5%.ConclusionBelgium implemented a rather complete surveillance of COVID-19 mortality, on account of a rapid investment of the hospitals and LTCF. LTCF could build on past experience of previous surveys and surveillance activities. The adoption of an extended definition of 'COVID-19-related deaths' in a context of limited testing capacity has provided timely information about the severity of the epidemic.


Subject(s)
COVID-19 , Epidemics , Belgium/epidemiology , Humans , Nursing Homes , SARS-CoV-2
8.
Arch Public Health ; 79(1): 185, 2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1484321

ABSTRACT

BACKGROUND: SARS-CoV-2 strains evolve continuously and accumulate mutations in their genomes over the course of the pandemic. The severity of a SARS-CoV-2 infection could partly depend on these viral genetic characteristics. Here, we present a general conceptual framework that allows to study the effect of SARS-CoV-2 variants on COVID-19 disease severity among hospitalized patients. METHODS: A causal model is defined and visualized using a Directed Acyclic Graph (DAG), in which assumptions on the relationship between (confounding) variables are made explicit. Various DAGs are presented to explore specific study design options and the risk for selection bias. Next, the data infrastructure specific to the COVID-19 surveillance in Belgium is described, along with its strengths and weaknesses for the study of clinical impact of variants. DISCUSSION: A well-established framework that provides a complete view on COVID-19 disease severity among hospitalized patients by combining information from different sources on host factors, viral factors, and healthcare-related factors, will enable to assess the clinical impact of emerging SARS-CoV-2 variants and answer questions that will be raised in the future. The framework shows the complexity related to causal research, the corresponding data requirements, and it underlines important limitations, such as unmeasured confounders or selection bias, inherent to repurposing existing routine COVID-19 data registries. TRIAL REGISTRATION: Each individual research project within the current conceptual framework will be prospectively registered in Open Science Framework (OSF identifier: https://doi.org/10.17605/OSF.IO/UEF29 ). OSF project created on 18 May 2021.

10.
Int J Health Geogr ; 20(1): 29, 2021 06 14.
Article in English | MEDLINE | ID: covidwho-1269880

ABSTRACT

BACKGROUND: The COVID-19 pandemic is affecting nations globally, but with an impact exhibiting significant spatial and temporal variation at the sub-national level. Identifying and disentangling the drivers of resulting hospitalisation incidence at the local scale is key to predict, mitigate and manage epidemic surges, but also to develop targeted measures. However, this type of analysis is often not possible because of the lack of spatially-explicit health data and spatial uncertainties associated with infection. METHODS: To overcome these limitations, we propose an analytical framework to investigate potential drivers of the spatio-temporal heterogeneity in COVID-19 hospitalisation incidence when data are only available at the hospital level. Specifically, the approach is based on the delimitation of hospital catchment areas, which allows analysing associations between hospitalisation incidence and spatial or temporal covariates. We illustrate and apply our analytical framework to Belgium, a country heavily impacted by two COVID-19 epidemic waves in 2020, both in terms of mortality and hospitalisation incidence. RESULTS: Our spatial analyses reveal an association between the hospitalisation incidence and the local density of nursing home residents, which confirms the important impact of COVID-19 in elderly communities of Belgium. Our temporal analyses further indicate a pronounced seasonality in hospitalisation incidence associated with the seasonality of weather variables. Taking advantage of these associations, we discuss the feasibility of predictive models based on machine learning to predict future hospitalisation incidence. CONCLUSION: Our reproducible analytical workflow allows performing spatially-explicit analyses of data aggregated at the hospital level and can be used to explore potential drivers and dynamic of COVID-19 hospitalisation incidence at regional or national scales.


Subject(s)
COVID-19 , Pandemics , Aged , Belgium/epidemiology , Hospitals , Humans , Incidence , SARS-CoV-2 , Spatio-Temporal Analysis
11.
Lancet Reg Health Eur ; 2: 100019, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-988716

ABSTRACT

BACKGROUND: Several studies have investigated the predictors of in-hospital mortality for COVID-19 patients who need to be admitted to the Intensive Care Unit (ICU). However, no data on the role of organizational issues on patients' outcome are available in this setting. The aim of this study was therefore to assess the role of surge capacity organisation on the outcome of critically ill COVID-19 patients admitted to ICUs in Belgium. METHODS: We conducted a retrospective analysis of in-hospital mortality in Belgian ICU COVID-19 patients via the national surveillance database. Non-survivors at hospital discharge were compared to survivors using multivariable mixed effects logistic regression analysis. Specific analyses including only patients with invasive ventilation were performed. To assess surge capacity, data were merged with administrative information on the type of hospital, the baseline number of recognized ICU beds, the number of supplementary beds specifically created for COVID-19 ICU care and the "ICU overflow" (i.e. a time-varying ratio between the number of occupied ICU beds by confirmed and suspected COVID-19 patients divided by the number of recognized ICU beds reserved for COVID-19 patients; ICU overflow was present when this ratio is ≥ 1.0). FINDINGS: Over a total of 13,612 hospitalised COVID-19 patients with admission and discharge forms registered in the surveillance period (March, 1 to August, 9 2020), 1903 (14.0%) required ICU admission, of whom 1747 had available outcome data. Non-survivors (n = 632, 36.1%) were older and had more frequently various comorbid diseases than survivors. In the multivariable analysis, ICU overflow, together with older age, presence of comorbidities, shorter delay between symptom onset and hospital admission, absence of hydroxychloroquine therapy and use of invasive mechanical ventilation and of ECMO, was independently associated with an increased in-hospital mortality. Similar results were found in in in the subgroup of invasively ventilated patients. In addition, the proportion of supplementary beds specifically created for COVID-19 ICU care to the previously existing total number of ICU beds was associated with increased in-hospital mortality among invasively ventilated patients. The model also indicated a significant between-hospital difference in in-hospital mortality, not explained by the available patients and hospital characteristics. INTERPRETATION: Surge capacity organisation as reflected by ICU overflow or the creation of COVID-19 specific supplementary ICU beds were found to negatively impact ICU patient outcomes. FUNDING: No funding source was available for this study.

12.
Arch Public Health ; 78(1): 121, 2020 Nov 18.
Article in English | MEDLINE | ID: covidwho-934302

ABSTRACT

BACKGROUND: In response to the COVID-19 epidemic, caused by a novel coronavirus, it was of great importance to rapidly collect as much accurate information as possible in order to characterize the public health threat and support the health authorities in its management. Hospital-based surveillance is paramount to monitor the severity of a disease in the population. METHODS: Two separate surveillance systems, a Surge Capacity survey and a Clinical survey, were set up to collect complementary data on COVID-19 from Belgium's hospitals. The Surge Capacity survey collects aggregated data to monitor the hospital capacity through occupancy rates of beds and medical devices, and to follow a set of key epidemiological indicators over time. Participation is mandatory and the daily data collection includes prevalence and incidence figures on the number of COVID-19 patients in the hospital. The Clinical survey is strongly recommended by health authorities, focusses on specific patient characteristics and relies on individual patient data provided by the hospitals at admission and discharge. CONCLUSIONS: This national double-level hospital surveillance was implemented very rapidly after the first COVID-19 patients were hospitalized and revealed to be crucial to monitor hospital capacity over time and to better understand the disease in terms of risk groups and outcomes. The two approaches are complementary and serve different needs.

13.
ESMO Open ; 5(5): e000947, 2020 09.
Article in English | MEDLINE | ID: covidwho-796349

ABSTRACT

BACKGROUND: Cancer seems to have an independent adverse prognostic effect on COVID-19-related mortality, but uncertainty exists regarding its effect across different patient subgroups. We report a population-based analysis of patients hospitalised with COVID-19 with prior or current solid cancer versus those without cancer. METHODS: We analysed data of adult patients registered until 24 May 2020 in the Belgian nationwide database of Sciensano. The primary objective was in-hospital mortality within 30 days of COVID-19 diagnosis among patients with solid cancer versus patients without cancer. Severe event occurrence, a composite of intensive care unit admission, invasive ventilation and/or death, was a secondary objective. These endpoints were analysed across different patient subgroups. Multivariable logistic regression models were used to analyse the association between cancer and clinical characteristics (baseline analysis) and the effect of cancer on in-hospital mortality and on severe event occurrence, adjusting for clinical characteristics (in-hospital analysis). RESULTS: A total of 13 594 patients (of whom 1187 with solid cancer (8.7%)) were evaluable for the baseline analysis and 10 486 (892 with solid cancer (8.5%)) for the in-hospital analysis. Patients with cancer were older and presented with less symptoms/signs and lung imaging alterations. The 30-day in-hospital mortality was higher in patients with solid cancer compared with patients without cancer (31.7% vs 20.0%, respectively; adjusted OR (aOR) 1.34; 95% CI 1.13 to 1.58). The aOR was 3.84 (95% CI 1.94 to 7.59) among younger patients (<60 years) and 2.27 (95% CI 1.41 to 3.64) among patients without other comorbidities. Severe event occurrence was similar in both groups (36.7% vs 28.8%; aOR 1.10; 95% CI 0.95 to 1.29). CONCLUSIONS: This population-based analysis demonstrates that solid cancer is an independent adverse prognostic factor for in-hospital mortality among patients with COVID-19. This adverse effect was more pronounced among younger patients and those without other comorbidities. Patients with solid cancer should be prioritised in vaccination campaigns and in tailored containment measurements.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Hospital Mortality , Neoplasms/epidemiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , Adrenal Cortex Hormones/therapeutic use , Aged , Aged, 80 and over , Belgium/epidemiology , COVID-19 , Comorbidity , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/virology , Female , Hospitalization , Humans , Intensive Care Units , Lung/diagnostic imaging , Male , Middle Aged , Neoplasms/drug therapy , Pandemics , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/virology , Prognosis , Respiration, Artificial , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL